Acrylic Esters of Some Substituted Alkanols

By C. E. Rehberg, Marion B. Dixon and W. A. Faucette

In an extensive study of copolymers of alkyl acrylates used in the development of the Lactoprene type of acrylic rubber,^{2,3} need arose for acrylic esters containing additional functional groups to be used in the preparation of vulcanizable copolymers of ethyl or other alkyl acrylates.

The esters reported in this paper (Table I) include chloro-, bromo-, nitro-, cyano- and aralkyl acrylates, as well as two trichloroalkyl methacylates. The methacrylates were prepared by use of methacrylic anhydride. 1,3-Dichloro-2-propyl acrylate was made from acrylyl chloride. All the other acrylates were prepared by the alcoholysis of methyl or ethyl acrylate. Efforts to prepare 2,2,2-trichloroethyl acrylate by the alcoholysis method resulted in no reaction. This is the only instance we have found in which a primary alkanol has failed to enter into the alcoholysis reaction with methyl or ethyl acrylate.

The esters in Table I were prepared for copolymerization with ethyl acrylate; hence their

(3) Mast and Fisher, ibid., 40, 107 (1948).

(5) Rehberg and Faucette, J. Org. Chem., 14, 1094 (1949).

homopolymerization was not studied. Several of them were polymerized by heating with benzoyl peroxide in sealed tubes, and the brittle points of the polymers were determined (Table I). Chlorine or bromine seems to raise the brittle points slightly, whereas the nitro group has a much stronger effect. The effect of the phenyl group appears to be intermediate between those of the halogens and the nitro group.

The polymers having brittle points above room temperature were hard and brittle at room temperature. The others were flexible and elastic. Those containing bromo or nitro groups were amber color; the others were substantially colorless. All were clear and transparent.

Acknowledgment.—We are grateful to C. O. Willits, C. L. Ogg and their associates for analyses, and to Merck and Company for trichloroethanol.

Summary

Several bromo-, chloro-, nitro-, cyano- and aralkyl acrylates and two trichloroalkyl methacrylates were prepared.

Trichloroethanol, although a primary alcohol,

did not alcoholyze ethyl acrylate.

The brittle points of alkyl polyacrylates were (6) Rebberg and Fisher, Ind. Eng. Chem., 40, 1429 (1948).

⁽¹⁾ One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, U. S. Department of Agriculture. Article not copyrighted.

Department of Agriculture. Article not copyrighted.
(2) Mast, Rehberg, Dietz and Fisher, Ind. Eng. Chem., 36, 1022 1944).

⁽⁴⁾ Rehberg, Dixon and Fisher, This Journal, 67, 208 (1945).

С. Е. Венвеке, Макіои В. Dіхои амр W. А. Рачсетте

TABLE I

Marans orted for	rted by ger rep	e repor	The p	apoun:	ese con comple	иээq I Ч L ,	rylate. vork had	Methac v tuesen	ight. b	ecular we	lom wo	1 30 00		Polymer appeared
z –	1 L	I.8	8.8 6.8	6.9	0.84 8.47	48.5 0.37	64.14 60.93	88.14 63.03	2711.1 1.0369	1.4480	g I	10 4	57 78	propyľ 2-Nitrobutyľ 2-Phenylethyl
32	6.7	1.8	9.9	₹ 9	8.84	3.8₺	ያ ት ፣ ፒት	£5.14	1.1162	07 <u>44</u> .1	g	96	₹ 6	2-Methyl-2-nitro-1-
2 92	8.24 3.11	8.84 2.11	8.4 0.8	∂.5 5.6	9.88 1.73	1.98 9.73	54.92 31.18	73.43 48.08	1.2469 1.0619	1.4657 1.4657	12	108 31	£8 18	2,2,2-Trichloro-t- butyl ^o 2-Cyanoethyl
21- 51- 06 9	2. 14 9. 73 1. 14 9. 88 7. 82 5. 88 8. 88	41.4 58.7 41.4 23.9 38.7 38.7 48.8	0.₽ 8.₽	4.4 3.0 3.9	33.5 27.1 26.2 26.2	39.4 37.3 26.5 39.4	66.34 66.00 66.05	Calcd. 34, 24, 24, 38, 86, 38, 86, 38, 86, 38, 86, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38	,otb 1,4777, I 6087, I 2211, I 2203, I 2603, I 2603, I		Mm. 5 10 14 10 14 10 14 10 14	22 20 20 20 20 20 20 20 20 20 20 20 20 2	\$6 96 08 \$6 04 \$4 %	Acrylate 2-Bromoethyl 3-Bromopropyl 1-Bromo-2-propyl 3,3-Dichloropropyl 3,3-Dichloropropyl 1,3-Dichloro-2-propyl 1,3-Dichloro-2-propyl
Brittle pt. of polymer, °C.	,N 10,	CI' BE	gen,	Mydra M				ERTIES	чояЧ сим	NOITAAA				

^a Polymer appeared to be of low molecular weight. ^a Methacrylate. ^c These compounds were reported by Marans ond Zelinski, This Journal, 72, 2125 (1950), after the present work had been completed. The properties reported for the monomeric esters are in substantial agreement with ours. Our 2-methyl-2-nitro-1-propyl polyacrylate was hard and brittle at room temperature, whereas Marans and Zelinski reported theirs to be softer than methyl polyacrylate (which has a brittle point of about 0°).

raised slightly by halogen substituents, moderately by the phenyl group, and considerably by Ригерберния 18, Ра. the nitro group.